Unidad 2 Polinomios

1. Factoriza los siguientes polinomios.

a)
$$P(x) = 2x^4 + 6x^3 - 8x$$

c)
$$R(x) = x^4 - 16x^2$$

b)
$$Q(x) = 3x^4 - 18x^3 + 27x^2$$
 d) $S(x) = x^3 + 3x^2 - 25x + 21$

d)
$$S(x) = x^3 + 3x^2 - 25x + 21$$

a) Vamos a factorizar el polinomio siguiendo estos pasos.

		$P(x) = 2x^4 + 6x^3 - 8x$
Paso 1	Extraer factor común, si se puede.	$P(x) = 2x(x^3 + 3x^2 - 4)$
Paso 2	Comprobar si el polinomio que queda entre paréntesis es una igualdad notable.	En este caso no se trata de ninguna igualdad notable.
Paso 3	Buscar los divisores de la forma x – a. En este paso se pueden utilizar diversos métodos de los ya estudiados: regla de Ruffini, teorema del factor, o resolver la ecuación de segundo grado en el caso de que el polinomio que tuviéramos fuera de grado 2.	Aplicamos Ruffini al polinomio que tenemos, $Q(x) = x^3 + 3x^2 - 4$, y se obtiene: $Q(x) = (x - 1)(x^2 + 4x + 4)$ Ahora nos queda: $P(x) = 2x(x - 1)(x^2 + 4x + 4)$
Paso 4	Volver al paso 2 con el polinomio que tenemos entre paréntesis.	El polinomio $x^2 + 4x + 4$ es una igualdad notable, y se tiene: $x^2 + 4x + 4 = (x + 2)^2$

Ahora tenemos $P(x) = 2x(x - 1)(x - 2)^2$. El proceso termina cuando el polinomio está totalmente factorizado o cuando en cualquier paso nos encontramos con un polinomio irreducible.

Dados los polinomios $P(x) = 4x^3 + 3x^2 + 2x + 5$, $Q(x) = 2x^3 - 4x^2 + 5$ y $R(x) = x^4 - 5x^2 + 6$, relaciona con flechas 2. las dos columnas.

<i>P</i> (-1)	
Q(2)	1
Término independiente de Q(x)	
Grado $P(x)$	2
Término independiente de <i>R</i> (<i>x</i>)	3
Grado $R(x)$	
R(-2)	4
Término independiente de $P(x)$	5
Grado Q(x)	
Grado de $P(x) + Q(x)$	6

- 3. En un rectángulo, el lado mayor es dos unidades inferior al cubo del menor. Expresa algebraicamente el valor del perímetro y del área del rectángulo.
- Dados los polinomios $P(x) = 3x^4 5x^3 + 7x 3$ y $Q(x) = x^2 x$, efectúa las siguientes operaciones. 4.

a)
$$P(x) + Q(x)$$

b)
$$P(x) - Q(x)$$
 c) $P(x) \cdot Q(x)$ **d)** $P(x) : Q(x)$

c)
$$P(x) \cdot Q(x)$$

e)
$$Q^{2}(x)$$

Realiza las siguientes operaciones. 5.

a)
$$(4x-2)(4x+2)$$

b)
$$(3x-2)^{\frac{1}{2}}$$

c)
$$(2x-2)^3$$

d)
$$(x-\frac{3}{2})^2$$

a)
$$(4x-2)(4x+2)$$
 b) $(3x-2)^2$ **c)** $(2x-2)^3$ **d)** $(x-\frac{3}{2})^2$ **e)** $(x+\frac{1}{5})^2$

6. Rodea los números que sean raíces de cada polinomio.

Polinomios	Posibles raíces
$P(x) = x^2 - 3x + 2$	1, -1, 2, 3, -5, 6
$Q(x) = x^3 - 7x - 6$	-1, 1, -2, 2, -3, 3
$R(x) = x^4 - 13x^2 + 36$	0, -1, 1, -2, 2, 3